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We survey several occurrences of combinatorics of words and morphisms in the pieces of Tom Johnson,
showing in particular that some of the sequences of notes that he used intuitively can be interpreted or
constructed through combinatorial objects such as morphisms. Furthermore some of these sequences have
an independent interest in number theory and theoretical computer science.
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1. Introduction

Tom Johnson is a minimalist composer who explored morphic sequences intuitively in his musi-
cal compositions beginning in the late 1970s. After meeting Michel Waldschmidt and Jean-Paul
Allouche in Paris around 1987, he became more conscious of the mathematics of what he was
doing, as one can see in Formulas for String Quartet, Narayana’s Cows, Pascal’s Triangle Mod-
ulo Seven, Automatic Music, and many other works. Without necessarily being exhaustive we
will briefly present some of his pieces with a quick description of the underlying mathematical
objects related to Combinatorics on words.

2. Two ‘morphic’ pieces: Formulas for String Quartet and Narayana’s Cows

As described in Allouche and Johnson (1995a), when Tom Johnson was composing his Formulas
for String Quartet, he was using heuristic algorithmic rules. Wanting to make these rules clearer
and more formal he questioned several mathematicians. Hints were given by D. Feldmann at
the University of New Hampshire and M. Waldschmidt at Université Paris 6: in particular Wald-
schmidt suggested that there could be ‘automatic sequences’ hidden behind these rules and that it
could be interesting to ask Allouche about this point. Indeed automatic and/or morphic sequences

*Corresponding author. Email: jean-paul.allouche@imj-prg.fr

© 2019 Informa UK Limited, trading as Taylor & Francis Group

https://crossmark.crossref.org/dialog/?doi=10.1080/17459737.2018.1524028&domain=pdf&date_stamp=2019-05-18
mailto:jean-paul.allouche@imj-prg.fr


Journal of Mathematics and Music 249

proved useful: they provide a unified description of these rules; they also helped the composer to
finish some of the Formulas.

A basic example of sequence ‘generated by a morphism’ is the Thue–Morse sequence. First
define on the set of words (i.e. finite sequences) and infinite sequences the morphism (i.e. the
rewriting rule) defined by 0 → 01, 1 → 10. Starting with 0 and iterating this morphism gives
successively

0
0 1
0 1 1 0
0 1 1 0 1 0 0 1
. . .

Continuing to iterate provides an infinite sequence that is, by construction, invariant under the
morphism:

0 1︸︷︷︸ 1 0︸︷︷︸ 1 0︸︷︷︸ 0 1︸︷︷︸ 1 0︸︷︷︸ . . .

0 1 1 0 1 . . .

The two sequences above are the same infinite sequence. Grouping the terms pairwise in
the first one recalls where they come from when the morphism was applied: in other words
the upper sequence appears as the image of the lower one by the morphism, or equivalently, the
lower sequence is obtained by ‘decoding’ the upper one. More properties of morphisms, morphic
sequences, and automatic sequences – which are a particular case of morphic sequences – can
be found, e.g. in Allouche and Shallit (2003).

The details of the (morphic) constructions generating the Formulas for String Quartet can
be seen in the score (Johnson 1994), also see Allouche and Johnson (1995a). We only give
here an explanation for Movement 1 of the Formulas, whose first lines are given in Figure 1.
This movement uses the morphism + → + − +, − → − − + so that the corresponding infinite
sequence begins

+ − + − − + + − + − − + − − + . . .

The formula is followed simultaneously by the four instruments with tempo proportions 1:3:9:27
and interval proportions of 1:2:3:4. The symbol + (or +1) indicates a melodic ascent, while the

Figure 1. The first lines of Movement 1 of the Formulas for String Quartet.
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symbol − (or −1) indicates a melodic descent.

VNl + − + − − + + − + − − + − − +
+ − + + − + − − + + − +

VN2 +2 −2 +2 −2 −2 +2
+2 −2 +2

VLA +3 −3
+3

VCL +4

Narayana’s Cows is a piece of Tom Johnson, dated 1989. Narayana was an Indian mathe-
matician in the fourteenth century, who proposed a variant of the Fibonacci rabbit, where the
cows cannot produce a calf before their fourth year. It is possible to define a notion of delayed
morphism to describe the successive generations of cows (see Allouche and Johnson 1995b).

Remark 2.1 Renormalizing the successive steps of the iterative construction of a sequence
generated by a morphism of constant length (like the morphism generating the Thue–Morse
sequence where all single letters give words of length 2) produces a one-dimensional self-similar
set, which is actually a fractal object. Tom Johnson also used this more general concept of
self-similarity, see, e.g. Johnson (1996) (also see Feldman (1998) and Johnson (2006)).

3. Generalized locally catenative formulas

A classical way of defining a sequence of words that can converge to a structured infinite
word is the use of locally catenative formulas. For a precise definition, the reader can consult
Rozenberg and Lindenmayer (1973) whose abstract gives a simplified definition: A locally cate-
native sequence of strings of letters is such that each string in the sequence, after an initial
stretch, is formed by concatenating strings which occurred at some specified distances previously
in the sequence. This means that the nth string (i.e. the nth word) is obtained by concatenating the
(n − i1)st, the (n − i2)nd, . . . , and the (n − ik)th strings,where i1, i2, . . . , ik is a finite increasing
sequence of fixed integers. A simple example is as follows: fix x1 = 1, x2 = 0, and define, for
n ≥ 3, xn = xn−1xn−2. We thus have x3 = x2x1 = 01, x4 = x3x2 = 010, x5 = x4x3 = 01001 · · · It
is easily checked that the sequence of strings (xn)n≥1 tends to an infinite binary sequence, namely
0 1 0 0 1 0 1 0 . . . which is known as the binary Fibonacci sequence (because of the lengths of
the consecutive xn’s). A link between these sequences and morphic sequences is given in Shallit
(1988), where ‘generalized locally catenative formulas’ are introduced: they differ from locally
catenative formulas in that codings are allowed before concatenating strings.

In his Doublings for Double Bass (1980, and a more general version in Johnson (2018)), Tom
Johnson gave six formulas.

• The first movement is given by

1 1
1 1 1 2
1 1 1 2 1 1 1 3
1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 4
. . .

where each number represents another note on a specially defined scale.
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• The second movement is given by

1 1
1 2 1 1
1 2 1 3 1 2 1 1
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 1
. . .

The score only gives the first four levels and defines the infinite scale. The bass player has to
calculate the rest.

• The fifth formula is given by

1 1
1 2 1 2
1 3 2 3 1 3 2 3
1 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4
. . .

It is worth mentioning that there are six different formulas, but only one of them was well
played, and that was just last year, 37 years after the piece was composed! Tom Peters suc-
ceeded in going on with the fifth formula for over 20 minutes and he made a fine recording
(Peters 2017).

The reader can check that the three formulas above can be obtained by iterating the following
locally catenative formulas:

• The first formula. Take the positive integers as (infinite) alphabet. Define the coding f by
f (n) := n + 1. Define three sequences of words (un), (vn), and (zn) by u1 = 11, v1 = 1,
z1 = 1, and for n ≥ 1, un+1 = vnznvnf (zn), vn+1 = vnznvn, and zn+1 = f (zn). So that let-
ting Xn = (un, vn, zn), we have X1 = (11, 1, 1) and, for n ≥ 1, Xn+1 = (un+1, vn+1, zn+1) =
(vnznvnf (zn), vnznvn, f (zn)). Iterating we obtain

X1 = (11, 1, 1)

X2 = (1112, 111, 2)

X3 = (11121113, 1112111, 3)

X4 = (1112111311121114, 111211131112111, 4)

. . .

The first component un of Xn (taking the first component is again a coding) gives the first
formula of the Doublings for Double Bass.

• The second formula. Take the positive integers as alphabet again. Define the coding f by
f (n) := n + 1. Define the triple of sequences Yn = (an, bn, zn) by Y1 = (11, 1, 1) and, for n ≥
1, Yn+1 = (an+1, bn+1, zn+1) := (bnf (zn)bn1, bnf (zn)bn, f (zn). Iterating we obtain

Y1 = (11, 1, 1)

Y2 = (1211, 121, 2)

Y3 = (12131211, 1213121, 3)

Y4 = (1213121412131211, 121312141213121, 4)

. . .

The first component an of Yn gives the second formula of the Doublings.
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• The fifth formula. This formula seems different from the other formulas in the Doublings. The
following ‘simple’ construction appears: at step n ≥ 2 interleave letter n between the letters of
the previous word, at every second place.

Step 1 1 1
Step 2 1 2 1 2
Step 3 1 3 2 3 1 3 2 3
Step 4 1 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4

. . .

Actually this sequence of words can also be generated by a generalized locally catena-
tive formula. Take the positive integers as alphabet. Define f by f (n) := n + 1. Extend
f to a morphism on all words with integer letters (e.g. f (142) = f (1)f (4)f (2) = 253).
Now define a sequence of words (un, vn) by (u1, v1) = (1, 1) and, for n ≥ 1, (un+1, vn+1) =
(1f (vn)1f (vn), f (vn)1f (vn)). It is clear that un = 1vn for any n > 1. Furthermore it is not diffi-
cult to prove by induction that the sequence (un) is exactly the sequence of consecutive words
occurring in the fifth formula of the Doublings.

Remark 3.1 The famous Encyclopedia of Integer Sequences (Sloane 1964) contains the three
sequences above that occur in other contexts. Namely:

• The sequence in the first formula is sequence A204988 in Sloane (1964) (the nth term of the
sequence is the index j < k such that n divides 2k − 2j, where k is the least index for which
such a j exists).

• The sequence in the second formula is sequence A001511 in Sloane (1964). It is called the
ruler sequence or the Gros sequence. The nth term of the sequence is the 2-adic valuation of
2n (i.e. the largest integer r such that 2r divides 2n).

• Write the sequence in the fifth formula on a single line by gluing together the successive words.
This gives: 1 1 1 2 1 2 1 3 2 3 1 3 2 3 1 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4 . . . This sequence –up to
gluing 01 in front of it– happens to be sequence A238845 in Sloane (1964): its nth term is the
length of the longest common prefix of the binary expansions of n and n + 1 (starting at 0).

The claims in this remark can be proved by induction. The details can be found in Allouche,
Dekking, and Queffélec (2018).

4. The Pascal triangle

Recall that the Pascal triangle is a table whose first row is equal to 1 0 0 0 . . . and where each
entry is the sum of the entry to its north west and of the entry to its north.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

The first eight lines of the Pascal triangle

The Pascal triangle modulo d is obtained by replacing each number in the Pascal triangle with
its remainder in the division by 7. For example we show the Pascal triangle modulo 2 and the
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Figure 2. The first four lines of the score: Le Triangle de Pascal modulo 7.

Pascal triangle modulo 7.

1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

The first eight lines of the Pascal triangle reduced modulo 2
(to see a link with the Sierpinski triangle, draw all straight lines that contain only 1’s)

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 3 3 5 1
1 6 1 6 1 6 1
1 0 0 0 0 0 0 1

The first eight lines of the Pascal triangle reduced modulo 7.

In 1995 Tom Johnson used the Pascal triangle reduced modulo 7 to generate music as follows.
Each of the 7 congruence classes of integers modulo 7 was associated with a note in a diatonic
scale. Then each row was played with notes of equal duration, there was a brief stop after each
row, and a longer pause after row 7, row 14 etc. The beginning of the score is given on Figure 2.
This gave rise to a radio program, see Figure 3, where the music generated by the Pascal triangle
modulo 7 was played by a computer with comments by Johnson and two other people (Johnson
and Farabet 1995).
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Figure 3. Announcement of the radio program Le Triangle de Pascal.
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Could moduli other than 7 be tested? It is for example well known that the picture of the Pas-
cal triangle modulo 2, once rescaled, is a famous fractal, namely the Sierpinski fractal. Since the
structure of the Pascal triangle modulo d is ‘simpler’ when d is a prime power and more and
more complicated when the number of distinct prime factors of d increases, – see, e.g. Allouche
and Berthé (1994) – Allouche suggested that it could be interesting to compare the Pascal tri-
angles modulo 6 and modulo 8. Tom Johnson tried the reduction modulo 6, which indeed gave
something seemingly “chaotic.” A surprise came with the reduction modulo 8. Johnson first con-
cocted a musical scale with 8 degrees. Then he let his computer play the triangle modulo 8;
as a sort of ‘built in’ rhythm seemed to emerge, he added a regular beat. The result amazingly
sounded “jazzy.” To conclude this section let us note that the Pascal triangle modulo 7 became
quite recently a piece for piano.

5. Exploring exhaustive sortings: The Catalogue of Chords

Combinatorics of words also deals with orders on finite or infinite families of words. The lex-
icographical order (also called the alphabetical order) and the genealogical order (also called
the radix order) are the most frequently used orders on words. Recall that the genealogical order
can be defined by saying that a word is smaller than another one for this order if either its length
is smaller, or if they have the same length and it is smaller according to the lexicographical
order. In his Catalogue of Chords Johnson (1986) proposes to play all possible chords on the
thirteen notes of the chromatic scale: a chord is defined as a set of at least 2 distinct notes,
so that there are

(13
j

)
chords on j notes for j ∈ [2, 13], the total number of chords thus being

∑
2≤j≤13

(13
j

) = 213 − (13
0

) − (13
1

) = 8178. The order in which these chords are played consecu-
tively is as follows: the lowest-pitched note that can go to the next semi-tone (without collision)
rises one semi-tone and the notes below return to their starting points; every time that the highest
note rises, there is a pause. Here is an extract of the order for four-note chords (read vertically as
on a score)

. . . 6 6 6 6 6 7 7 . . .

. . . 5 5 5 5 5 3 4 . . .

. . . 3 3 4 4 4 pause 2 2 . . .

. . . 1 2 1 2 3 1 1 . . .

Playing this piece on a piano is a real performance. For a long time, only Tom Johnson and
Samuel Vriezen played it successfully (Johnson 2013). Since then Samuel Boré and Christopher
Adler learned the piece, and probably others; and many people have programmed it for computer,
player piano, and other mechanical instruments.

Remark 5.1 Other pieces of Johnson use ordered exhaustive lists, for example Six-note Melody
(1987), 360 Chords and 844 Chords (both dated 2005).

6. Conclusion

Along with this brief description of some of the pieces of Tom Johson related to combinatorics of
words, we gave some examples of what he calls “Found mathematical objects.” A common fea-
ture of these pieces is that they can be played “automatically,” or even that they could be, in some
cases, potentially infinite: in this vein one could have cited, e.g. the pieces: Infinite Melodies,
Rational Melodies (see Figure 4), Counting Keys, Music for 88 with Mersenne numbers, Tick
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Figure 4. Rational Melodies, �16.

Tock Rhythms, Counting Duets (the reader is invited to try to describe, e.g. the second movement
with one of the mathematical tools above), Counting languages, Eggs and Baskets··· and many
of the pieces that can be found at http://brahms.ircam.fr/tom-johnson#works_by_date (a more
complete catalogue is available at http://www.editions75.com). We chose not to be exhaustive:
for example we did not mention pieces related to rhythmic (miniscule) canons, self-replicating
structures, one-dimensional tilings, block designs, homometric pairs, logical series of harmonies
unlike the lexicographical sequence of the Chord Catalogue, nor ‘twisted’ morphic sequences as
in Automatic Music for Six Percussionists. What should be perhaps underlined as a caveat is the
difference that Johnson sees between a mathematical object (as general and universal as possi-
ble) and a musical object (often simply a singular phenomenon particularly adapted to musical
transformation).
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